If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+8x-1.8=0
a = 4.9; b = 8; c = -1.8;
Δ = b2-4ac
Δ = 82-4·4.9·(-1.8)
Δ = 99.28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{99.28}}{2*4.9}=\frac{-8-\sqrt{99.28}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{99.28}}{2*4.9}=\frac{-8+\sqrt{99.28}}{9.8} $
| 84x-588=672 | | (2x-50)=100 | | 5(m+19)=200 | | 15=11w-2(2w-1) | | 9-4x=-5x+9 | | 7=4+1.5m | | -20=5y+7(9y-7) | | 70=8x=38 | | 3m^2-22m+32=0 | | 22=b/22-2 | | 2/7m-1/7=3/13 | | -4(3w-4)=37 | | 7(5y+1)=38 | | -w/5=w/5-1/10 | | N+n=121 | | 17x+8=42+12x+4 | | 2x+8=−8x−12 | | −6w=−30 | | -31/6=k-2/3 | | 3/5(6x-7)=2 | | 9+x=x-6 | | 3x+5(x–6)=2(10–x) | | 1/2x+1/2x+(x+15)+(x+25)+100=540 | | 2a-10=a+60 | | -9(t-3)=4(t+2)-t | | ((x+10)•2)+(x•2)=44 | | 3(x+6)=2x+4x-36 | | 18x+14=10x-18 | | -4(v+7)=5v+44 | | ((x+10)•2)+(x+2)=44 | | 7y-28=4(y-4) | | -1.8=(2z-18)/5 |